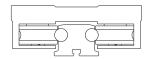


LINEAR GUIDE

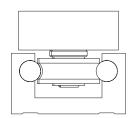
SAIBO is one of world recognized manufacturers of precision power transmission components. SAIBO group has two divisions, linear motion division and bearing division. Linear Product Division mainly produces curved rail and conveyor, telescopic rail and fork, linear guide, linear module, belt conveyor etc. Bearing Division mainly produces Thin-section bearing, High-speed angular contact ball bearing, linear bearing etc.

SAIBO products are widely used in 3C, factory automation, precision machine, green energy, rail transportation, medical and pharmacy etc. industries. SAIBO end users are located in more than 50 countries and regions around the world.


SAIBO has over 33,000 square meters producing facilities totally and 350 employees. SAIBO continues to develop innovative automation components and modulars to meet customers sustainable solutions.

SAIBO means aim for greatness, focus on details. We seek to work with you and promise the following:

- The right product from your application
- A quality product you can trust
- Engineering assistance that is proven and world renown


INDEX

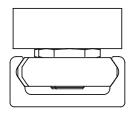
LGA Roller Type Linear Guide (Aluminum Rail Body)

Two steel shafts are assembled external aluminum rail body. Rollers realize high speed, low noise. Carriages are sealed with good dust-protect performance.

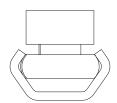
P1-P6

LGB Roller Type Linear Guide (Aluminum Rail Body)

Two steel shafts are assembled internal aluminum rail body. Carriage is narrow and suitable for compact applications. Rollers realize high speed, low noise.

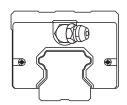

P7-P12

LGC rail adopt wide-body structure and big diameter shafts to realize heavy load capacity and good rigidity.


P13-P18

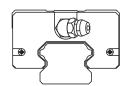
TV Roller Type Linear Guide (Steel Rail)

Rail is made of Cold-drawn steel profile with hardened raceways. Suitable for heavy load, compact structure applications


P19-P26

TE Roller Type Linear Guide (Steel Rail)

The series guide rail has a large working range, and still has good reliability in dirty environment.



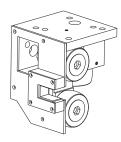
HG Steel Ball Type Linear Guide

Steel balls circulate in four-rows raceways. Heavy load capacity, high accuracy.

P35-P40

EG Steel Ball Type Linear Guide

EG linear guide has same structure with HG but the assembly height is lower. Suitable for medium and heavy load capacity, high accuracy and compact space applications.


P41 - P45

MG Steel Ball Type Linear Guide (Miniature)

Miniature linear guide is designed with two-rows raceways. Suitable for light load and miniaturized equipment.

P47-P51

HV Heavy load linear Guide

The series guide rails and rollers are hardened, with high precision, stable performance and low friction. Especially suitable for heavy loads.

P53-P63

LGA Roller Type Linear Guide

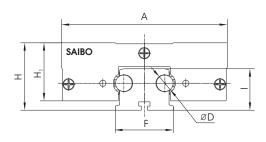
Construction

LGA linear guide systems are mainly made of lightweight aluminum alloy. Four rollers inside the carriage run on railway's hardened shafts. Stable rolling movement are particularly suitable for use in material handling system and automatic production lines.

Railway

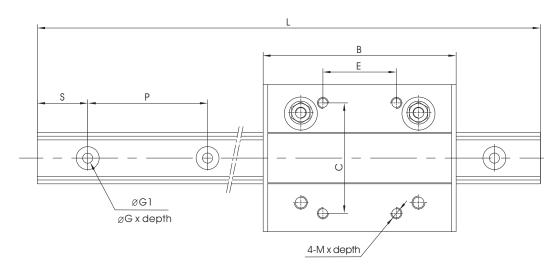
Anodized aluminum alloy body with two hardened and chrome-plated steel shafts

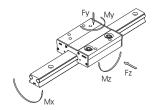
Carriage


Anodized aluminum alloy plate

- 4 pieces double row balls bearings(Rollers)
- 2 pieces concentric bolts and 2 pieces eccentric bolts
- 2 pieces plastic lubrication cover with oil soaked felt wipers

Feature


- 1. High speed, Low friction and Low noise
- 2. Preload is adjustable
- 3.Sealed and Lubricated



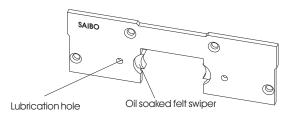
Туре	Assembly Dimensions			Carri	age Dimer					
	Н	F	А	В	С	Е	H ₁	M x depth	D	Gxdepth
LGA25	32.5	28	80	105	60	40	28	M6x8	8	12.5x5.5
LGA30	38.5	34.2	100	120	85	50	33	M8x10	10	14.5x6.5

Railwa	y Dimension:	S			Max Load	capacity(N)	Max moment capacity(N·m)			
G1	I	S	Р	Lmax*	Fymax	Fzmax	Mxmax	Mymax	Mzmax	
5.5	20	25	50	3000	520	1200	7.6	26	15	
6.5	24	25	50	4000	1200	4000	26	78	45	

Setting clearance - free

None clearance is necessary for system's rigidity and stability. LGA series use 2 concentric bolts on one side in the direction of railway and 2 eccentric bolts on the other side. These two eccentric bolts are used for setting clearance-free.

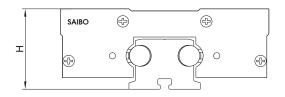
- 1. Tighten concentric bolts.
- 2. Tighten the eccentric bolts to near the critical point, but not reach the critical point. (This is to rotate the eccentric bolts).
- 3. Rotate the eccentric bolts with straight screwdriver at the end of the stud to adjust the clearance. Adjust the clearance to zero.
- 4. Slide the carriage by hand and adjust to the extent where there causes a slight slipping resistance.
- 5. Keep eccentric bolt's position and tighten the nut.


Setting Pre-load

It is same as Setting clearance-free. First adjust clearance to zero, continue rotating eccentric bolts will get pre-load. Appropriate pre-load should be decided according to the application.

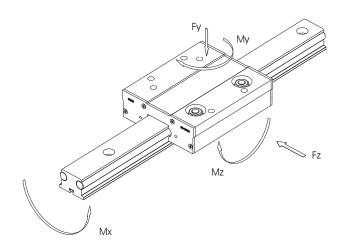
Over pre-load will decrease system's life. Please be careful.

Lubrication


Plastic lubrication cover contains oil soaked felt wipers which can be re-lubricated via lubrication holes.

Working parameter

Max speed: 10m/s Max acceleration: 50m/s 2 Working temperature: $-20^{\circ}\text{C} \sim +80^{\circ}\text{C}$


Accuracy

Load / life calculation

Due to the hardness of the railway's shaft and fatigue analysis of railway and roller, the railway's life does not determine the system life. It is determined by roller's life. System's life varies by actual combination of load, working status and environment conditions etc. So loading factor should be calculated firstly. Then system's life could be calculated via using below formula.

LF-Loading factor

(LF should be less than 1.0 for any combination of load)

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

LF - Loading factor Below parameters can be taken from the table of Load capacity.

Fy - Actual load in Y direction. (N)

Fy max - Max load capacity in Y direction. (N)

Fz - Actual load in Z direction. (N)

Fz max - Max load capacity in Z direction. (N)

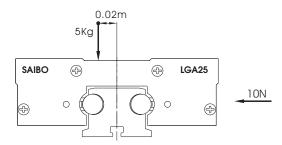
Mx - Actual moment in X direction. (N.m)
My - Actual moment in Y direction. (N.m)
My - Actual moment in Z direction. (N.m)
Mz - Actual moment in Z direction. (N.m)
Mz max - Max moment capacity in Y direction. (N·m)
Mz max - Max moment capacity in Z direction. (N·m)

Life calculation

SAIBO designed LGA series load capacity according to basic life of 100km for each type. System's life in km could be calculated via below formula.

Life(km) =
$$\frac{100}{(0.03 + 0.97 \text{LF*f})^3}$$

Tolerance H: ± 0.20mm



f - Reduction coefficient of the application and environment.

None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.5
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.5-2
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	2-3.5

Calculation example

Here select SB-LGA25 as calculation example. This system is loaded as below picture. Working condition is clean and there is no vibration or shock.

The load factor LF is calculated use formula

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

Fy =
$$5 \text{ kg x 9.8 (gravity)} = 49 \text{ N}$$

Fz = 10 N

$$Mx = 49 \times 0.02 = 0.98 \text{ N.m}$$

My = 0

Mz = 0

Take parameters Fy max, Fz max, Mx max, My max, Mz max from table and then fill in the formula

$$LF = \frac{49}{520} + \frac{10}{1200} + \frac{0.98}{7.60} + \frac{0}{Mymax} + \frac{0}{Mzmax} = 0.2314$$

According to the description of working condition, take f = 1.1

Life(km) =
$$\frac{100}{(0.03+0.97\text{LF*f})^3}$$
=
$$\frac{100}{(0.03+0.97*0.2314*1.1)^3}$$
=
$$4716\text{km}$$

LGB Roller Type Linear Guide

Construction

LGB linear guide systems are designed for compact space application. The carriages are in narrow structures. Railway, narrow carriage and lubrication cover are its basic construction.

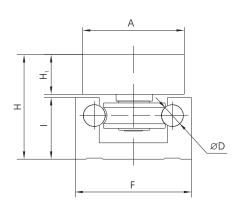
Railway

Anodized aluminum alloy body with two hardened and chrome-plated steel shafts

Carriage

Anodized aluminum alloy plate

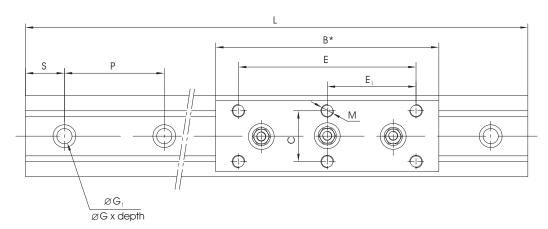
3 pieces double row balls bearings(Rollers)

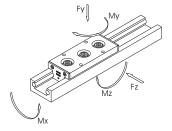

Eccentric bolt used for adjust the clearane/preload

Optional lubrication covers with oil soaked felt wipers

Feature

- 1. High speed, Low friction and Low noise
- 2. Preload is adjustable
- 3. Narrow body for compact application
- 4. Optional Lubrication covers





Type	Assembly Dimensions										
Турс	Н	F	А	B*	С	Е	E,	H,	М	D	Gxdepth
LGB15	28.8	32	28	88	20	70	_	10.9	4xM5	6	7.5x2.5
LGB20	35.5	47	47	108	38	50	_	11.5	4xM6	8	9.5x5
LGB25	43	65	64	150	47	130	65	14.7	6xM8	10	11x4

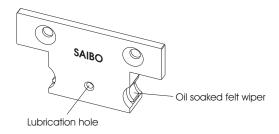
^{*} This size does not include plastic cover's thickness. All size plastic cover's thickness is 2.5mm. So covered carriages' length must add 5.0mm to size B.

Railway Dimensions					Max Load (capacity(N)	Max moment capacity(N·m)			
G ₁	1	S	Р	Lmax	Fymax	Fzmax	Mxmax	Mymax	Mzmax	
4.5	17	30	60	3000	330	1000	1.8	12	5.5	
5.5	21.75	30	60	3000	520	1200	6.6	45	15	
6.5	26.5	30	60	3000	1200	4000	19	120	50	

Setting clearance - free

None clearance is necessary for system's rigidity and stability. LGB series carriage has two concentric bolts on both sides and one eccentric bolt in the center along the railway. This eccentric bolt is used for setting clearance-free.

- 1. Tighten concentric bolts.
- 2. Tighten the eccentric bolt to near the critical point, but not reach the critical point. (This is for rotate the eccentric bolts).
- 3. Rotate the eccentric bolts with internal hexagonal wrench in the end of the eccentric bolt to adjust the clearance. Adjust the clearance to zero.
- 4. Slide the carriage by hand and adjust to the extent where there causes a slight slipping resistance.
- 5. Keep eccentric bolt's position and tighten the nut.

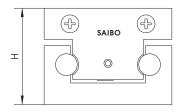

Setting Pre-load

It is same as Setting clearance-free. First adjust clearance to zero, continue rotating eccentric bolt will get pre-load. Appropriate pre-load should be decided according to application.

Over pre-load will decrease system's life. Please be careful.

Lubrication

Plastic lubrication cover contains oil soaked felt wipers which can be re-lubricated via lubrication hole. This lubrication cover is optional, not included in standard carriage.

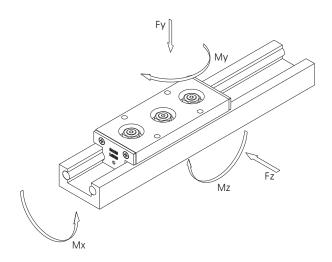


Working parameter

Max speed: 10m/s Max acceleration: 50m/s²

Working temperature: $-20^{\circ}\text{C} \sim +80^{\circ}\text{C}$

Accuracy



Tolerance H: ±0.20mm Note: Higher accuracies are available upon request.

Load / life calculation

Due to the hardness of the railway's shaft and fatigue analysis of railway and roller, the railway's life does not determine the system life. It is determined by roller's life. System's life varies by actual combination of load, working status and environment conditions etc. So loading factor should be calculated firstly. Then system's life could be calculated via using below formula.

LF-Loading factor

(LF should be less than 1.0 for any combination of load)

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

LF - Loading factor Below parameters can be taken from the table of Load capacity.

Fy - Actual load in Y direction. (N)

Fy max - Max load capacity in Y direction. (N)

Fz - Actual load in Z direction. (N)

Fz max - Max load capacity in Z direction. (N)

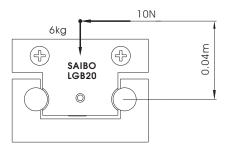
Mx - Actual moment in X direction. (N.m) Mx max - Max moment capacity in X direction. (N·m) My - Actual moment in Y direction. (N·m) My max - Max moment capacity in Y direction. (N·m)

Mz - Actual moment in Z direction. (N.m) Mz max - Max moment capacity in Z direction. (N·m)

Life calculation

SAIBO designed LGB series load capacity according to basic life of 100km for each type. So after customers designed system's actual load, system's life could be calculated via below formula.

Life(km) =
$$\frac{100}{(0.03 + 0.97 \text{LF*f})^3}$$



f - Reduction coefficient of the application and environment.

None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.5
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.5-2
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	2-3.5

Calculation example

Here select SB-LGB20 as calculation example. This system loaded as blow picture. Working condition is clean and there is no vibration or shock.

The load factor LF is calculated use formula

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

$$Fy = 6 kg \times 9.8 (gravity) = 58.8 N$$

Fz = 10 N

$$Mx = 10 \times 0.04 = 0.40 \text{ N.m}$$

My = 0

Mz = 0

Take parameters Fy max, Fz max, Mx max, My max, Mz max from table and then fill in the formula

$$LF = \frac{58.8}{520} + \frac{10}{1200} + \frac{0.40}{6.60} + \frac{0}{Mymax} + \frac{0}{Mzmax} = 0.182$$

According to the description of working condition, take f = 1.1

Life(km) =
$$\frac{100}{(0.03+0.97\text{LF*f})^3}$$
=
$$\frac{100}{(0.03+0.97*0.182*1.1)^3}$$
= 8849 km

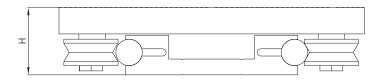
LGC Roller Type Linear Guide

Construction:

LGC railway is wide structure. This linear guide can be used to replace the system built with two railways and has big load capacity and moment capacity. Especially the moment load is much bigger as two shafts' span is big.

Although railway's width is big, light-weight aluminum alloy still keep railway's weight light. In the body of the railway, there is a big U-shape groove. This groove is used for installing driven parts such as rack and gear, timing belt.

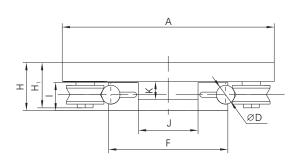
Feature:


- 1. High speed, Low friction and Low noise
- 2. Big load capacity and moment capacity
- 3. Pre-load is adjustable
- 4. Accurate and stable

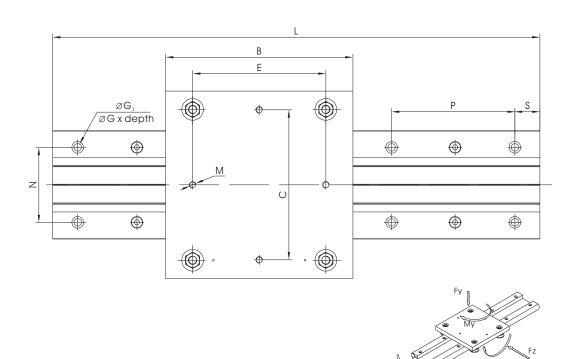
Working parameter

Max speed: 10m/s Max acceleration: 50m/s²

Working temperature: $-20^{\circ}\text{C} \sim +80^{\circ}\text{C}$


Accuracy

Tolerance H: ± 0.20mm


Note: Higher accuracies are available upon request.

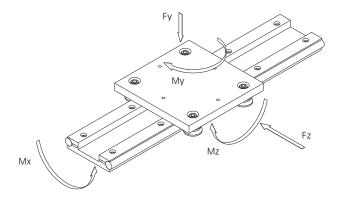
Туре	Assembly Dimensions		Carriage Dimensions								
	Н	F	А	В	С	Е	H ₁	М	D	Gxdepth	G ₁
LGC100	51	99	200	200	140	140	48	4-M8	20	14x5.5	9
LGC130	51	130	230	230	180	160	48	4-M8	20	14x5.5	9

Railway Dimensions						Max Load	capacity(N)	Max moment capacity(N·m)			
I	J	K	N	S	Р	Lmax	Fymax	Fzmax	Mxmax	Mymax	Mzmax
30	40	18	62	30	300	6000	6000	6000	190	210	210
30	65	18	90	30	300	6000	6000	6000	240	240	240

Setting clearance - free

None clearance is necessary for system's rigidity and stability. LGC series use 2 concentric bolts one side in the direction of railway and 2 eccentric bolts on the other side. These two eccentric bolts are used for setting clearance-free.

- 1. Tighten concentric bolts.
- 2. Tighten the eccentric bolts to near the critical point, but not reach the critical point. (This is to rotate the eccentric bolts).
- 3. Rotate the eccentric bolts with wrench at the end of the stud to adjust the clearance. Adjust the clearance to zero.
- 4. Slide the carriage by hand and adjust to the extent where there causes a slight slipping resistance.
- 5. Keep eccentric bolt's position and tighten the nut.


Setting Pre-load

It is same as Setting clearance-free. First adjust clearance to zero, continue rotating eccentric bolts will get pre-load. Appropriate pre-load should be decided according to application.

Over pre-load will decrease system's life. Please be careful.

Load / Life calculation

Due to the hardness of the railway's shaft and fatigue analysis of railway and roller, the railway's life does not determine the system life. It is determined by roller's life. System's life varies by actual combination of load, working status and environment conditions etc. So loading factor should be calculated firstly. Then system's life could be calculated via using below formula.

Working parameter

Max speed: 10m/s Max acceleration: 50m/s²

Working temperature: −20°C ~ +80°C

LF - Loading factor (LF should be less than 1.0 for any combination of load)

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

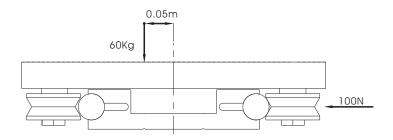
LF - Loading factor Below parameters can be taken from the table of Load capacity.

Fy - Actual load in Y direction. (N) Fy max - Max load capacity in Y direction. (N) Fz - Actual load in Z direction. (N) Fz max - Max load capacity in Z direction. (N)

Mx - Actual moment in X direction. (N.m) Mx max - Max moment capacity in X direction. (N·m) My - Actual moment in Y direction. (N.m) My max - Max moment capacity in Y direction. (N·m) Mz - Actual moment in Z direction. (N.m) Mz max - Max moment capacity in Z direction. (N·m)

Life calculation

SAIBO designed LGC linear guide load capacity according to basic life of 100km. System's life in km could be calculated using below formula.


Life(km) =
$$\frac{100}{(0.03 + 0.97 \text{LF*f})^3}$$

f - Reduction coefficient of the application and environment.

None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.5
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.5-2
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	2-3.5

Calculation example

Here we select a load example to calculate the life. Sample's load is as below picture. Working condition is clean and there is no vibration or shock.

The load factor LF is calculated use formula

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

$$Fy = 60 \text{ kg x 9.8 (gravity)} = 588 \text{ N}$$

$$Fz = 10 N$$

$$Mx = 588 \times 0.04 = 29.4 \text{ N.m}$$

$$My = 0$$

$$Mz = 0$$

Take parameters Fy max, Fz max, Mx max, My max, Mz max from table and then fill in the formula

$$\mathsf{LF} = \frac{588}{6000} \ + \frac{100}{6000} \ + \frac{29.4}{240} \ + \frac{0}{\mathsf{Mymax}} \ + \frac{0}{\mathsf{Mzmax}} \ = 0.2372$$

According to the description of working condition, take f = 1.1

Life(km) =
$$\frac{100}{(0.03+0.97\text{LF*f})^3}$$
=
$$\frac{100}{(0.03+0.97*0.2372*1.1)^3}$$
=
$$4405 \text{ km}$$

TV Roller Type Linear Guide

Construction

TV rail matches roller slider could achieve high-speed, high acceleration, low noise. Lubricate felt wipers provides cleaning and lubrication. According to load capacity, carriage could be set more than 3 rollers.

Rail

Rail is made of high-quality Cold-drawn steel with induction hardened raceways. So it performs good rigidity, excellent wear-resisting property. Various surface treatment is optional for resisting corrosion.

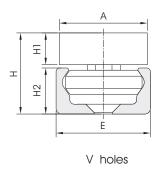
Carriage

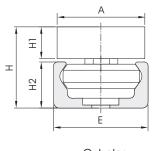
Carriage body is made of high strength aluminium alloy. Precision rollers set in concentric and eccentric according to different load capacities.

Feature

High load capacity, good rigidity performance Low friction, excellent wear-resisting property High speed and acceleration Rails are easy to joint for long length

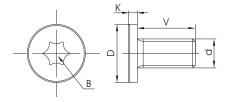
Running Parameter


Max. speed Size 28: 5m/s Size 35: 6m/s Size 43: 7m/s

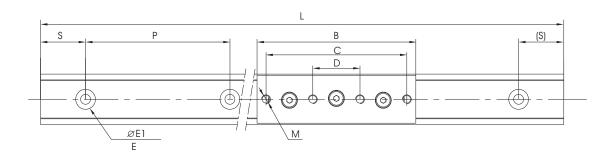

Max. Acceleration: 15m/s²

TV Linear Guide

Dimension and Load Capacity

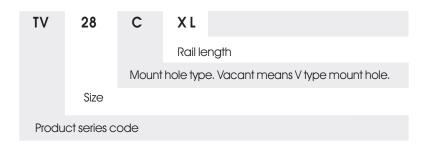


\mathcal{C}	noies


Rail Type	Carriage Type (standard 3 roller)	Asse	embly Dimensic	ons	Standard Carriage Dimensions			
		H (mm)	E (mm)	A (mm)	B (mm)	C (mm)	D (mm)	
TV28 X L	TCA28	24	28	26.5	88	78	35	
TV35 X L	TCA35	30	35	34	114	96	30	
TV43 X L	TCA43	37	43	40	134	114	55	

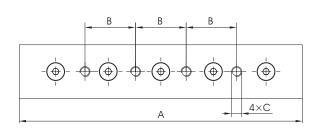
- \ast V type hole is optional DIN7991 bolt.
- * C type hole is optional below bolt.

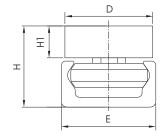
Screw Dimensions												
TYPE	d (mm)	D (mm)	K (mm)	B (mm)	V (mm)							
CCHS28	M5x0.8	10	1.5	T10	10							
CCHS43	M8x1.25	16	1.5	T45	16							



		Railway Dimensions									
H1	М			E1	H2	Р	S				
(mm)	(mm) (mm) V type		C type	(mm)	(mm)	(mm)	(mm)				
9.8	M5	√ø 10.6x90°	Ø11x2.1	5.6	12.25	80	25				
11.7	M6	√ø 13.2x90°	_	6.6	16	80	25				
14.5	M8	√ø 17x90°	Ø 18x3.1	8.5	21	80	25				

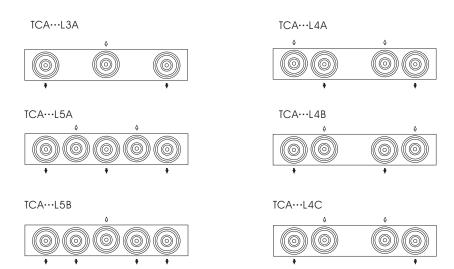
Model Rule

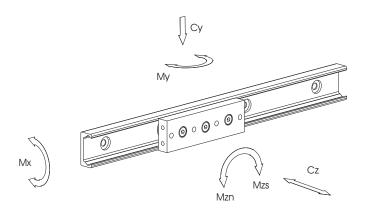




TCA Long Carriage

SAIBO also supply long carriage mounted more rollers to achieve big load capacity.


Carriage Dimension



Rail Type	Carriage Type (Long size)	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	H (mm)	H1 (mm)
TV28 X L	TCA28L	140	25	M5	26.5	28	24	9.8
TV43 X L	TCA43L	208	40	M8	40	43	37	14.5

Rollers Setting

Load Capacity

			Load Capacity										
Туре	No. Rollers	C ₁₀₀ (N)	Cy (N)	Cz (N)	M _x (Nm)	M _y (Nm)	M _z (Nm)						
		()	()	()			Mzs	Mzn					
TCA28	3	4285	2170	640	6.3	16	27.3	27.3					
TCA28L3A	3	4285	2170	640	6.3	29	54.4	54.4					
TCA28L4A	4	4285	2170	750	11.5	29	54.4	109					
TCA28L4B	4	4285	2170	750	11.5	29	109	54.4					
TCA28L4C	4	4285	2170	750	11.5	29	81.6	81.6					
TCA28L5A	5	5065	2580	900	11.5	29	81.6	81.6					
TCA28L5B	5	6816	3472	640	6.2	29	54.4	54.4					
TCA35	3	8050	3515	1065	12.7	33.7	61.5	61.5					
TCA43	3	12280	5515	1575	23.6	60	104.5	104.5					
TCA43L3A	3	12280	5515	1575	23.6	108.4	212	212					
TCA43L4A	4	12280	5515	1855	43.6	108.4	212	418					
TCA43L4B	4	12280	5515	1855	43.6	108.4	418	210					
TCA43L4C	4	12280	5515	1855	43.6	108.4	313.5	313.5					
TCA43L5A	5	14675	6540	2215	43.6	108.4	313.5	313.5					
TCA43L5B	5	19650	8800	1570	23.6	108.4	210	210					

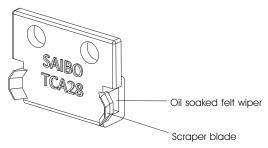
Preload Setting

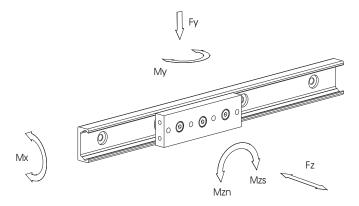
Eliminating the gap between the slider and the rail helps to improve the rigidity and stability of the system. The preload adjustment of the TV guide is relatively easy. The method is as follows:

- 1. First, mount the concentric rollers onto the slider base and lock it with the following hexagonal chuck wrench and inner hex wrench.
- 2. In the same way, mount the eccentric roller onto the slider base. Fixing the screw to tighten slightly but not lock.
- 3. Hold the position of the inner hex wrench by one hand. And turn the hexagonal chuck wrench slightly in the other hand, turning the eccentric shaft. Adjust the gap between the rail and the slider. In the meanwhile, move the slider until feel a slight resistance.
- 4. Hold the position of the Hexagonal chuck wrench by one hand and lock the screw with the inner hex wrench in the other hand.

Carriage size	Locking torque (N.m)
28	7
35	7
43	12

Important Note


Appropriate pre-load performs system rigidity. However, over-preload will decrease system's life rapidly. Please be careful.


Lubricate

SAIBO Lubricate wiper designed two functions. Scraper blade is to remove the dust on the raceway. Oil soaked felts touch the raceway to lubricate it. All lubricate wiper filled oil before delivery. Please check and fill mineral base oil regularly. Change felt or lubricate wiper when felt was worn.

Load Calculation

Load capacity of the motion guide system varies mainly by the size of bearing and railway, lubricated or not, and the load magnitude and direction. Other factors include speed and acceleration and environment etc. To calculate system life, loading factor LF should be calculated firstly.

LF-Loading factor

(LF should be less than 1.0 for any combination of load)

$$LF = Fy + (\frac{Fz}{Cz} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax})$$
 Cy

LF - Loading factor Below parameters can be taken from the table of Load capacity.

Fy - Actual load in Y direction. (N) Fy max - Max load capacity in Y direction. (N)

Fz - Actual load in Z direction. (N) Fz max - Max load capacity in Z direction. (N)

Mx - Actual moment in X direction. (N.m) Mx max - Max moment capacity in X direction. (N·m)

My - Actual moment in Y direction. (N.m) My max - Max moment capacity in Y direction. (N·m)

Mz - Actual moment in Z direction. (N.m) Mz max - Max moment capacity in Z direction. (N·m)

Life calculation

$$L \text{ km} = 100 \cdot (\frac{C_{100}}{LFf})^3$$

 C_{100} – Load coefficient

(Please see it in the table of Carriage load capacity)

f - Reduction coefficient of the application and environment.

None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.5
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.5-2
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	2-3.5

TE Roller Type Linear Guide

Construction

The roller guide rail is composed of a C-type track and a roller slider. The slider adopts positive eccentric roller design.

Railway

Guide material: zinc-plated steel or stainless steel Stainless steel rails have high corrosion resistance

Carriage

The slider body comes in two types: compact body or solid body.

The Rail materials used zinc-plated steel or stainless steel

The solid slider body is made of high-quality aluminum alloy, treated with oxidation.

The rollers are precision-ground ball bearings.

Feature

Anti-corrosion

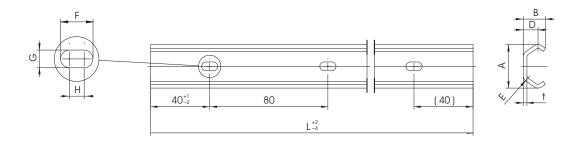
Good reliability in dirty environments

Large range of work

Slider adjustment is simple

Running Parameter

Running Parameter

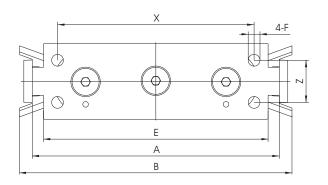

Max. Speed: 1.5m/s

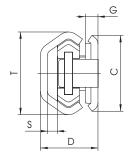
Max. Acceleration: 2m/s²

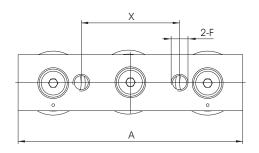
Operating temperature: the maximum operating temperature of the guide rail is 120° C. If you need to use in a high temperature environment, you can contact our relevant technicians

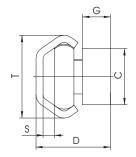
TE Linear Guide (zinc-plated steel)

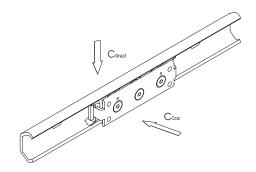
Rail Type	Size	А	В	t	D	E	F	G	Н	Adapting Screws
TE	30	29.5	15	2.5	10	4.5	11	6	5	M5
	45	46.4	24	4	15.5	6.5	14	9	5	M8


Model Rule

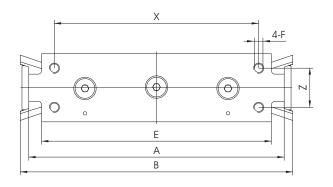


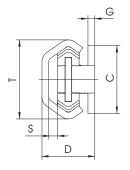

Carriages


Compact Body Carriages \$E30

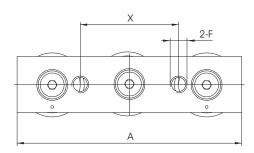


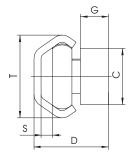
Solid Body Carriages CE30

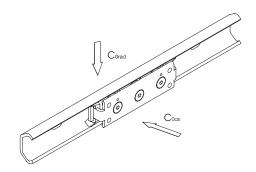

^{*}The sliding block uses a bearing steel roller



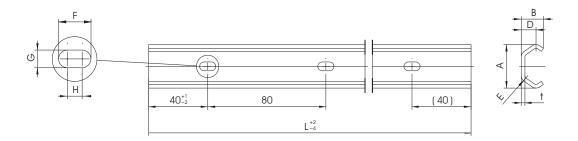
Carriage Type	А	В	С	D	Е	F	G	S	Т	Z	X	C _{0rad}	C _{0ax}
SE30	88	97	27	20.5	80	M5	4.5	3.5	29.5	15	70	870	435
CE30	80	-	20	26.5	-	M6	10	3.3	29.5	-	35	870	435




Compact Body Carriages \$E45



Solid Body Carriages CE45

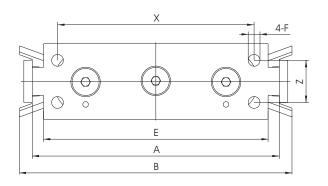

*The Carriages uses a bearing steel roller

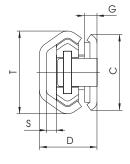
Carriage Type	А	В	С	D	Е	F	G	S	Т	Z	X	C ₀ rad	Coax
SE45	150	160	40	31	135	M6	4	5	46.4	23	120	1740	935
CE45	120	-	25	38	-	M8	12	5.7	46.4	-	55	1740	935

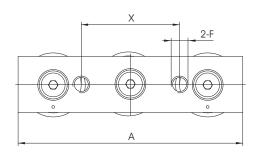
STE Linear Guide (stainless steel)

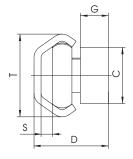
Rail Type	Size	А	В	t	D	E	F	G	Н	螺钉孔
СТГ	30	29.5	14.1	2.5	10	4.5	11	6	5	M5
STE	45	46.4	24	4	15.5	6.5	14	9	5	M8

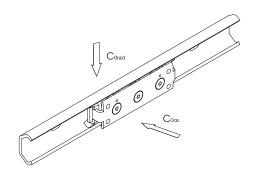
Model Rule



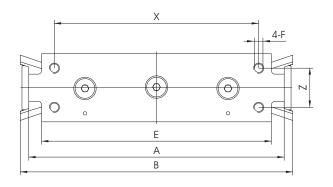

31

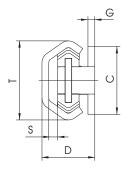

Carriages


Compact Body Carriages SSE30

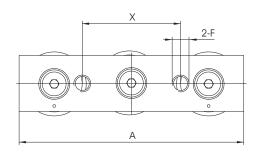


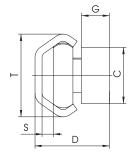
Solid Body Carriages SCE30

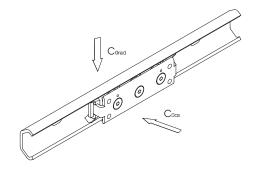

*The Carriages uses stainless steel roller



Carriage Type	А	В	С	D	Е	F	G	S	Т	Z	X	C ₀ rad	Соах
SSE30	88	97	27	20.5	80	M6	4.5	3.5	29.5	15	70	870	435
SCE30	80	-	20	26.5	-	M5	10	3.3	29.5	-	35	870	435



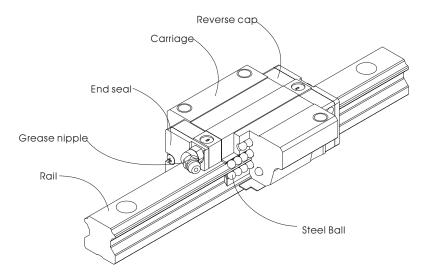

Compact Body Carriages SSE45

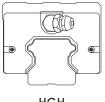


Solid Body Carriages SCE45

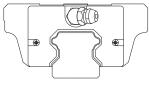
*The Carriages uses stainless steel roller

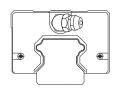
Carriage Type	А	В	С	D	Е	F	G	S	Т	Z	X	C ₀ rad	C _{0ax}
SSE45	150	160	40	31	135	M6	4	5	46.4	23	120	1740	935
SCE45	120	-	25	38	-	M8	12	5.7	46.4	-	55	1740	935




HG Steel Ball Type Linear Guide

Structure


HG linear guide is composed of a rail and carriage(s). Steel balls circulate inside the carriage through the reverse caps at both ends of the carriage. By the designing of four-row raceways, 45degrees contact angles, it has not only equal heavy load capacity in radial and axial directions with high rigidity, but also self-aligning capability to realize high accuracy and smooth operation.


Carriage Types

HGH

HGW

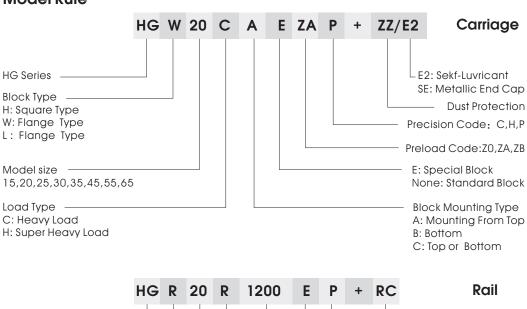
HGL

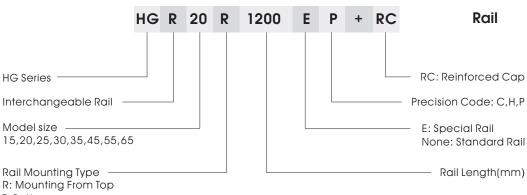
HGH Square (Higher) type carriage. This assembly height is higher than another two types. Only top mounting available.

HGW Flange type carriage. This type carriage is suitable for heavy moment load application because of lower assembly height and wider mounting surface. Top mounting and bottom amounting are available.

HGL Square (Lower) type carriage. This assembly height is same as flange type. Only top mounting available.

Preload

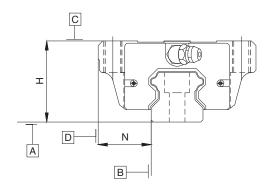

SAIBO offers three classes of standard preload for various applications and conditions.


Class	Code	Preload	Condition	Examples of Application
Light Preload	ZO	0-0.02C	Certain load direction. low impact. low precision required	Transportation devices, auto-packing machines. X-Y axis for general industrial machines. welding machines.
Medium Preload	ZA	0.05C-0.07C	High precision required	Machining centers. Z axis for general industrial. machines. EDM. NC lathes, Precision X-Y tables.
Heavy Preload	ZB	0.10C-0.12C	High rigidity required. with vibration and impact	Machining centers, grinding machines. NC lathes, horizontal and vertical milling machines.

Class	Interchangeable Guideway	Non-Interchangeable Guideway
Preload classes	ZO, ZA	ZO, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

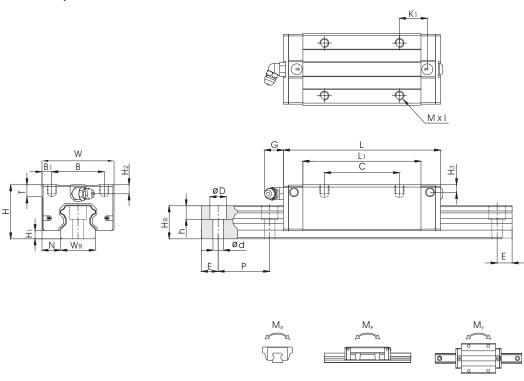
Model Rule



T: Bottom

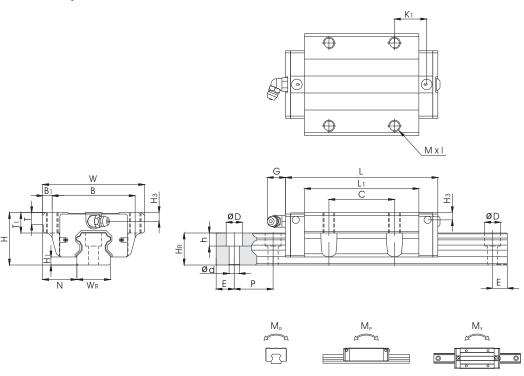
Accuracy

		HG-15,20			HG-25,30,35	
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.01	0.006	0.02	0.015	0.007
Variation of height N	0.02	0.01	0.006	0.03	0.015	0.007

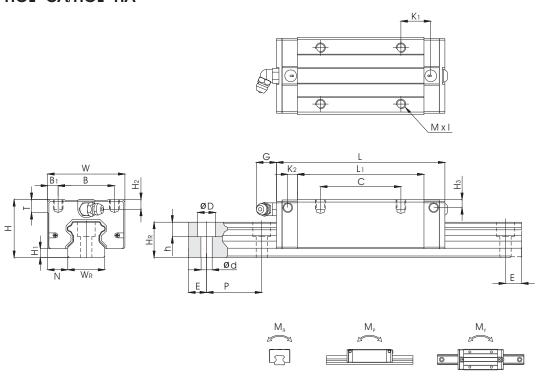

		HG-45,55			HG-65	
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.05	± 0.025	± 0.1	± 0.07	± 0.035
Dimensional tolerance of width N	± 0.1	± 0.05	± 0.025	± 0.1	± 0.07	± 0.035
Variation of height H	0.03	0.015	0.007	0.03	0.02	0.01
Variation of height N	0.03	0.02	0.01	0.03	0.025	0.015

Running Parallelism

Running parallelism of I	olock surface C to	surface A	Running parallelis	m of block surface	e D to surface B
Rail Length			Accuracy (µm)		
(mm)	С	Н	Р	SP	UP
-100	12	7	3	2	2
100–200	14	9	4	2	2
200–300	15	10	5	3	2
300–500	17	12	6	3	2
500-700	20	13	7	4	2
700–900	22	15	8	5	3
900–1100	24	16	9	6	3
1100–1500	26	18	11	7	4
1500–1900	28	20	13	8	4
1900–2500	31	22	15	10	5
2500–3100	33	25	18	11	6
3100–3600	36	27	20	14	7
3600–4000	37	28	21	15	7

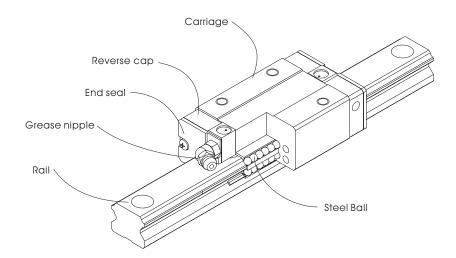

HG Linear Guide HGH-CA/HGH-HA

Model		Assei (mn	mbly					Din	nensior (m	ns of Blo m)	ock						[Dime	nsior (mr		Rail		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		tic Rat Iomer		We	ight
No.	Н	Н	N	W	В	B ₁	С	L,	L	K,	G	Mxl	Ţ	H ₂	Нз	W _R	H _R	D	h	d	Р	Е	Rail (mm)	Rating C(kN)	Rating CO(kN)	M _R	M _p kN-m	M _v kN-m	Block kg	Rail kg/m
HGH 15CA	28	4.3	9.5	34	26	4	26	39.5	61.4	10	5.3	M4x5	6	7.95	7.7	15	15	7.5	5.3	4.5	60	20	M4x16	11.38	16.97	0.12	0.10	0.10	0.18	1.45
HGH 20CA		4.6	10	4.4	20	,	36	50.5	76.7	12.25	12	ME	8	,	,	00	17.5	0.5	0.5	,	,,	00	MENT	17.75	27.76	0.27	0.20	0.20	0.30	2.21
HGH 20HA	30	4.0	12	44	32	6	50	65.2	91.4	12.6	12	M5x6	ð	6	6	20	17.5	9.5	8.5	6	60	20	M5x16	21.18	35.9	0.35	0.35	0.35	0.39	2.21
HGH 25CA			10.5	40	٥٢	, -	35	58	84	15.7	12	14/0	,	10	_	00	00	,,	_	,	,,	00	14/-00	26.48	36.49	0.42	0.33	0.33	0.51	3.21
HGH 25HA	40	5.5	12.5	48	35	0.0	50	78.6	104.6	18.5	12	M6x8	8	10	9	23	22	11	9	7	60	20	M6x20	32.75	49.44	0.56	0.57	0.57	0.69	3.21
HGH 30CA	45	,	1/	,,	40	10	40	70	98.4	20.25	12	14010	0.5	٥٢	10.0	00	٥,	14	10	9	00	00	140-05	38.74	52.19	0.66	0.53	0.53	0.88	4.47
HGH 30HA	45	6	16	60	40	10	60	93	121.4	21.75	12	M8x10	8.5	9.5	13.8	28	26	14	12	9	80	20	M8x25	47.27	69.16	0.88	0.92	0.92	1.16	4.4/
HGH 35CA		7.5	18	70	50	10	50	80	112.4	20.6	12	M8x12	10.0	16	19.6	34	29	14	12	9	80	20	M8x25	49.52	69.16	1.16	0.81	0.81	1.45	6.30
HGH 35HA	00	7.5	10	/0	50	10	72	105.8	138.2	22.5	12	IVIOXIZ	10.2	10	19.0	34	29	14	12	9	00	20	IVIOXZO	60.21	91.63	1.54	1.40	1.40	1.92	0.30
HGH 45CA		0.5	20.5	0,4	40	13	60	97	137.4	23	10.0	M10x17	16	10.5	30.5	AE.	38	20	17	14	105	00.5	M12x35	77.57	102.71	1.98	1.55	1.55	2.73	10.41
HGH 45HA	//	9.5	20.5	00	00	13	80	128.8	169.2	28.9	12.9	IVITUX17	10	10.5	30.5	45	30	20	17	14	105	22.5	IVI I ZXSS	94.54	136.46	2.63	2.68	2.68	3.61	10.41
HGH 55CA	80	10	00.5	100	7.5	10.5	75	117.7	166.7	27.35	10.0	M10-10	17.5	00	00			00	00	1/	100	20	NA3 4-45		148.33	3.69	2.64	2.64		15.00
HGH 55HA	δU	13	23.5	100	/5	12.5	95	155.8	204.8	36.4	12.9	M12x18	17.5	22	29	53	44	23	20	16	120	30	M14x45		196.2	4.88	4.57	4.57		15.08
HGH 65CA		15	03.5	10/	٦,	0.5	70	144.2	200.2	43.1	100		٥٢	,,,	15		50	٠,	00	10	150	0.5	1417.50	163.63	215.33	6.65	4.27	4.27		01.10
HGH 65HA	90	15	31.5	126	/0	25	120	203.6	259.6	47.8	12.9	M16x20	25	15	15	63	53	26	22	18	150	35	M16x50	208.36	303.13	9.38	7.38	7.38		21.18


HG Linear Guide HGW-CC/HGW-HC

Model		mens Asser (mm	mbly					Din	nensioi (m	ns of BI m)	ock						D	ime	nsior (mn		Rail		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		atic Rat Momer		We	eight
No.	Н	H ₁	N	W	В	B ₁	С	L	L	K,	G	Mxl	T	H ₂	Нз	W _R	H _R	D	h	d	Р	Е	Rail (mm)	Rating C(kN)	Rating CO(kN)	M _R kN-m	M _P kN-m	M _v kN-m	Block kg	Rail kg/m
HGW 15CC	24	4.3	16	47	38	4.5	30	39.5	61.4	8	5.3	M5	6	8.9	3.95	15	15	7.5	5.3	4.5	60	20	M4x16	11.38	16.97	0.12	0.10	0.10	0.17	1.45
HGW 20CC	20	1 4	21.5	40	E 2	5	40	50.5	76.7	10.25	12	M6		10	,	00	17.5	0.5	0.5	,	40	20	M5x16	17.75	27.76	0.27	0.20	0.20	0.40	2.21
HGW 20HC	30	4.0	21.0	63	53	Э	40	65.2	91.4	17.6	12	IVIO	8	10	6	20	17.5	9.5	0.0	6	60	20	OTXCIVI	21.18	35.9	0.35	0.35	0.35	0.52	2.21
HGW 25CC	24		23.5	70	E7	6.5	A.E.	58	84	10.7		M8	8	14	9	23	22	11	9	7	60	20	M6x20	26.48	36.49	0.42	0.33	0.33	0.59	3.21
HGW 25HC	30	0.0	23.3	70	0/	0.0	45	78.6	104.6	21	12	IVIO	0	14	9	23	22	111	9	/	00	20	IVIOXZU	32.75	49.44	0.56	0.57	0.57	0.80	3.21
HGW 30CC	42	6	31	90	72	9	52	70	98.4	14.25		M10	0.5	14	13.8	00	26	14	12	9	80	20	M8x25	38.74	52.19	0.66	0.53	0.53	1.09	4.47
HGW 30HC	42	0	31	90	12	9	52	93	121.4	25.75	12	IVITU	0.5	10	13.0	20	20	14	12	9	00	20	IVIOXZO	47.27	69.16	0.88	0.92	0.92	1.44	4.47
HGW 35CC	40	7.5	33	100	82	9	62	80	112.4	14.6		M10	10.1	10	19.6	24	29	14	12	9	80	20	M8x25	49.52	69.16	1.16	0.81	0.81	1.56	6.30
HGW 35HC	40	7.5	33	100	02	9	02	105.8	138.2	27.5	12	INITU	10.1	10	19.0	34	29	14	12	9	00	20	IVIOXZO	60.21	91.63	1.54	1.40	1.40	2.06	0.30
HGW 45CC	40	0.5	37.5	100	100	10	80	97	137.4	13		M12	15.1	00	30.5	45	38	20	17	1.4	105	00.5	M12x35	77.57	102.71	1.98	1.55	1.55	2.79	10.41
HGW 45HC	100	9.5	37.5	120	100	10	00	128.8	169.2	28.9	12.9	IVITZ	15.1	22	30.5	45	30	20	17	14	105	22.5	IVIIZXOO	94.54	136.46	2.63	2.68	2.68	3.69	10.41
HGW 55CC	70	10	42.5	1.40	114	10	OF.	117.7	166.7	17.35		NA1 4	175	04 5	200	E2	4.4	23	00	14	100	20	NA1 4-/4E	114.44	148.33	3.69	2.64	2.64	4.52	15.00
HGW 55HC	70	13	43.5	140	110	12	95	155.8	204.8	36.4		IVI I 4	17.5	26.5	29	53	44	23	20	10	120	30	M14x45	139.35	196.2	4.88	4.57	4.57	5.96	15.08
HGW 65CC	00	16	53.5	170	140	1.4	110	144.2	200.2	23.1		M16	25	37.5	15	63	53	26	22	10	150	25	M16x50	163.63	215.33	6.65	4.27	4.27	9.17	21.18
HGW 65HC	70	10	00.0	1/0	142	14	110	203.6	259.6	52.8	12.9	IVIIO	20	37.5	10	00	00	20	22	10	100	33	IVITOXOU	208.36	303.13	9.38	7.38	7.38	12.89	21.10

HG Linear Guide HGL-CA/HGL-HA


Model		Asser (mm	mbly						Dime	ensions (mm		ock						D	ime	nsior (mr		Rail		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		tic Rat Iomer		We	ight
No.	Н	Н	N	W	В	В	С	L,	L	K ₁	K ₂	G	Mxl	T	H ₂	H ₃	W _R	H _ℝ	D	h	а	Р	Е	Rail (mm)	Rating C(kN)	Rating C _o (kN)	M _R	M _P	M _r kN-m	Block kg	Rail kg/m
HGL 15CA	24	4.3	9.5	34	26	4	26	39.5	61.4	10	4.85	5.3	M4x4	6	3.95	3.7	15	15	7.5	5.3	4.5	60	20	M4x16	11.38	16.97	0.12	0.10	0.10	0.14	1.45
HGL 25CA	24		12.5	10	25	4 6	35	58	84	15.7	6	12	M6x6	8	6	5	22	20	11	9	7	60	20	M6x20	26.48	36.49	0.42	0.33	0.33	0.42	3.21
HGL 25HA	30	0.0	12.5	40	30	0.0	50	78.6	104.6	18.5	0	12	IVIOXO	0	0	5	23	22	11	9	/	OU	20	IVIOXZU	32.75	49.44	0.56	0.57	0.57	0.57	3.21
HGL 30CA	42	6	16	,,	40	10	40	70	98.4	20.25	6	12	M8x10	8.5	, -	10.8	00	0/	1.4	10	9	80	20	M8x25	38.74	52.19	0.66	0.53	0.53	0.78	4.47
HGL 30HA	42	0	10	00	40	10	60	93	121.4	21.75	0	12	IVIOXIU	0.5	0.5	10.6	20	20	14	12	9	OU	20	IVIOXZO	47.27	69.16	0.88	0.92	0.92	1.03	
HGL 35CA	40	7.5	10	70		10	50	80	112.4	20.6	7	12	M8x12	10.0		10 /		00		10	0	00	00	M8x25	49.52	69.16	1.16	0.81	0.81	1.14	
HGL 35HA	48	7.5	18	//	50	10	72	105.8	138.2	22.5	/	12	IVIOXIZ	10.2	9	12.6	34	29	14	12	9	80	20	IVIOXZO	60.21	91.63	1.54	1.40	1.40	1.52	6.30
HGL 45CA		0.5	00.5	٥,	,,,	10	60	97	137.4	23	10	10.0	1410.17	1,	0.5	00.5	45	00	00	17	1.4	105	00.5	1410-05	77.57	102.71	1.98	1.55	1.55	2.08	
HGL 45HA	00	9.5	20.5	80	00	13	80	128.8	169.2	28.9	10	12.9	M10x17	16	8.5	20.5	45	38	20	17	14	105	22.5	M12x35	94.54	136.46	2.63	2.68	2.68	2.75	10.41
HGL 55CA	70	10	00.5	100	7.5	10.5	75	117.7	166.7	27.35		10.0	1410.10	17.5	10	10			00	00	1/	100	20		114.44	148.33	3.69	2.64	2.64	3.25	
HGL 55HA	70	13	23.5	100	/5	12.5	95	155.8	204.8	36.4	11	12.9	M12x18	17.5	12	19	53	44	23	20	10	120	υU	M14x45	139.35	196.2	4.88	4.57	4.57	4.27	15.08

EG Steel Ball Type Linear Guide

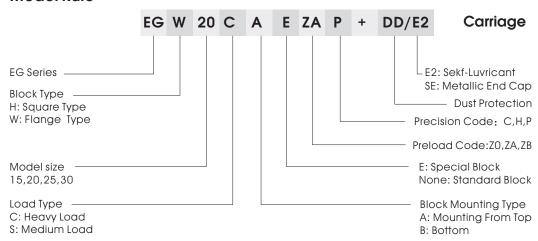
Structure

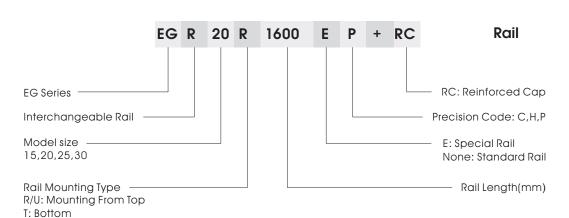
EG linear guide structure is same as HG type. Four-row raceways, 45degrees contact angles designing. It has not only equal heavy load capacity in radial and axial directions with high rigidity, but also self-aligning capability to realize high accuracy and smooth operation. EG assembly height is lower than HG type. Heavy load and medium load carriages are designed to meet different applications.

Carriage Types

EGH Square type carriage. Assembly height is lower than HGH, fit for compact space applications. EGW Flange type carriage. Assembly height is same as EGH. This type carriage is suitable for heavy moment load application because of lower assembly height and wider mounting surface. Top mounting and bottom amounting are available.

Preload

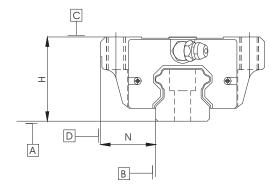

SAIBO offers three classes of standard preload for various applications and conditions.


Class	Code	Preload	Condition
Very Light Preload	ZO	0-0.02C	Certain load direction. low impact.low precision required
Light Preload	ZA	0.03C-0.05C	Low load and High precision required
Medium Preload	ZB	0.06C-0.08C	High rigidity required. with vibration and impact

Class	Interchangeable Guideway	Non-Interchangeable Guideway
Preload classes	ZO, ZA	ZO, ZA, ZB

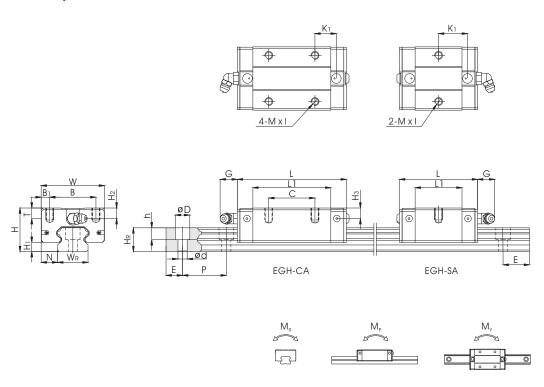
Note: The "C" in the preload column denotes basic dynamic load rating.

Model Rule



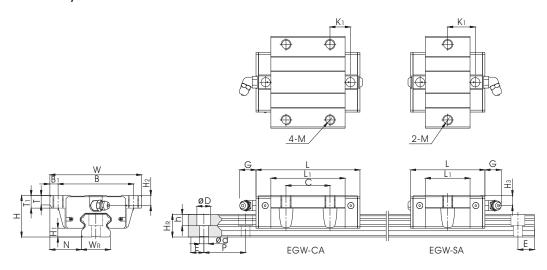
42

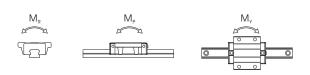
Accuracy


		EG-15,20			EG-25,30	
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	±0.015	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.01	0.006	0.02	0.015	0.007
Variation of height N	0.02	0.01	0.006	0.03	0.015	0.007

Running Parallelism

Running parallelism of I	block surface C to	surface A	Running parallelis	m of block surface	e D to surface B
Rail Length			Accuracy (µm)		
(mm)	С	Н	Р	SP	UP
-100	12	7	3	2	2
100-200	14	9	4	2	2
200-300	15	10	5	3	2
300-500	17	12	6	3	2
500-700	20	13	7	4	2
700—900	22	15	8	5	3
900-1100	24	16	9	6	3
1100-1500	26	18	11	7	4
1500-1900	28	20	13	8	4
1900-2500	31	22	15	10	5
2500-3100	33	25	18	11	6
3100-3600	36	27	20	14	7
3600-4000	37	28	21	15	7

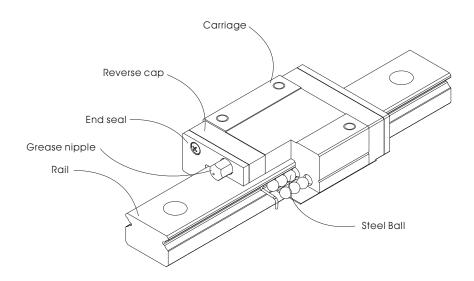

EGH Linear Guide EGH-SA/EGH-CA

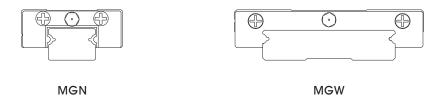


Model	of.	mens Asser (mm	nbly					Dir		ns of Bl nm)	ock						Dir	mens	ions mm)	of Ra	il		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		tic Rate Ioment		We	ight
No.	Н	H ₁	N	W	В	В,	С	L,	L	K ₁	G	Mxl	T	H ₂	Нз	W _R	H _R	D	h	d	Р	Е	Rail (mm)	Rating C(kN)	Rating C _o (kN)	M _R kN-m	M, kN-m	M _v kN-m	Block kg	Rail kg/m
EGH15SA	0.4	4.5	0.5	2.4	0/	,	-	23.1	41.1	14.8	5.7	MA	,		,	15	10.5	7.5	- 0	4.5	/0	00	144-17	5.35	9.40	0.08	0.04	0.04	0.09	1.05
EGH15CA	24	4.5	9.5	34	26	4	26	39.8	57.8	10.15	5./	M4x6	6	5.5	6	15	12.5	7.5	5.3	4.5	OU	20	M4x16	7.83	16.19	0.13	0.10	0.10	0.15	1.25
EGH20SA	00	,	,,	40		-	-	29	51.2	18.75			7.5	,	,	00	15.5	0.5	0.5	,	,	00	145 17	7.23	12.74	0.13	0.06	0.06	0.15	0.00
EGH20CA	28	6	11	42	32	5	32	48.1	70.3	12.3	12	M5x7	7.5	6	6	20	15.5	9.5	8.5	6	OU	20	M5x16	10.31	21.13	0.22	0.16	0.16	0.24	2.08
EGH25SA		-					-	35.5	59.7	21.9														11.40	19.50	0.23	0.12	0.12	0.25	
EGH25CA	33	/	12.5	48	35	6.5	35	59	83.2	16.15	12	M6x9	8	8	8	23	18	11	9	7	60	20	M6x20	16.27	32.40	0.38	0.32	0.32	0.41	2.67
EGH30SA							-	41.5	71.9	26.75														16.42	28.10	0.40	0.21	0.21	0.45	
EGH30CA	142	10	16	60	40	10	40	70	100.4	21.05	12	M8x12	9	8	9	28	23	14	12	9	80	20	M8x25	23.70	47.46	0.68	0.55	0.55	0.76	4.35

EGH Linear Guide EGW-SA/EGW-CA

Model	of.	mens Asser (mm	mbly					Dir		ns of Bl nm)	ock							Dim		ons (of Ra	il		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		itic Rati Momen		We	eight
No.	Н	H,	N	W	В	B ₁	С	L,	L	K ₁	G	М	T	T,	H ₂	Н₃	W _R	H _R	D	h	d	Р	Е	Rail (mm)	Rating C(kN)	Rating C _o (kN)	M _R kN-m	M _P kN-m	M _r kN-m	Block kg	Rail kg/m
EGW15SA	24	1 E	18.5	52	41	5.5	-	23.1	41.1	14.8	5.7	M5	5	7	5.5	6	15	10.5	7 5	E 2	4 5	40	20	M4x16	5.35	9.40	0.08	0.04	0.04	0.09	1.25
EGW15CA		4.0	10.0	52	41	5.5	26	39.8	57.8	10.15		CIVI	3	/	0.0	0	10	12.0	7.5	0.0	4.0	00	20	IVI4X I O	7.83	16.19	0.13	0.10	0.10	0.21	1.20
EGW20SA	28	6	19.5	59	49	5	-	29	51.2	18.75	12	M6	7	9	6	6	20	15.5	0.5	0 5	4	40	20	M5x16	7.23	12.74	0.13	0.06	0.06	0.19	2.08
EGW20CA		0	19.0	39	49	5	32	48.1	70.3	12.3	12	IVIO	/	9	0	0	20	10.0	9.0	0.0	6	00	20	IVIOXTO	10.31	21.13	0.22	0.16	0.16	0.32	2.00
EGW25SA	33	7	25	73	40	6.5	-	35.5	59.7	21.9	12	M8	7 5	10	8	8	23	18	11	9	7	40	20	M6x20	11.40	19.50	0.23	0.12	0.12	0.35	2.67
EGW25CA		,	20	/3	00	0.0	35	59	83.2	16.15	1	IVIO	7.0	10	0	0	20	10	11	9	/	00	20	IVIOXZU	16.27	32.40	0.38	0.32	0.32	0.59	2.07
EGW30SA	42	10	31	90	72	9	-	41.5	71.9	26.75		M10	7	10	8	9	28	23	14	12	9	90	20	M8x25	16.42	28.10	0.40	0.21	0.21	0.62	4.35
EGW30CA		10	υI	70	12	7	40	70	100.4	21.05	1	IVITU	,	10	o	7	20	23	14	12	7	00	20	IVIOXZO	23.70	47.46	0.68	0.55	0.55	1.04	4.00




MG Steel Ball Type Linear Guide

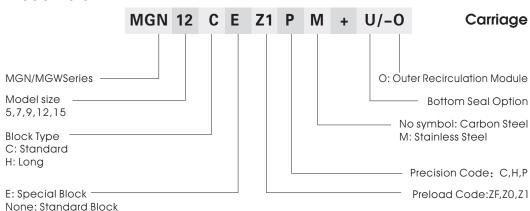
Structure

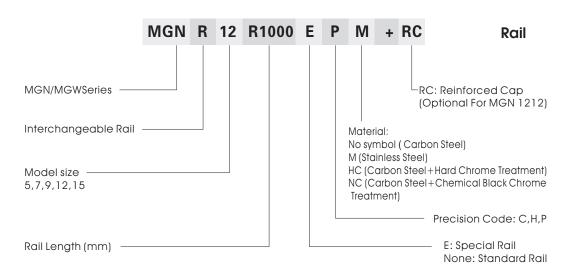
MG miniature linear guide is designed with four-points contact structure. It not only has heavy load capacity in radial and axial directions, but also realizes with high rigidity, high accuracy and smooth operation.

Category

MGN type rail is standard and narrow.

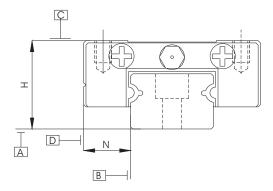
MGW type rail is wide. This structure improves carriages load and moment load capacity.


Preload


SAIBO offers three classes of standard preload for various applications and conditions.

Class	Code	Preload	Accuracy
Light Clearance	ZF	Clearance 4-4–10 µ m	С
Very Light Preload	ZO	0	C-P
Light Preload	ZI	0.02C	C-P

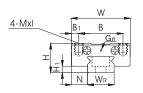
Note: The "C" in the preload column denotes basic dynamic load rating.

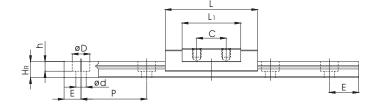

Model Rule

Accuracy

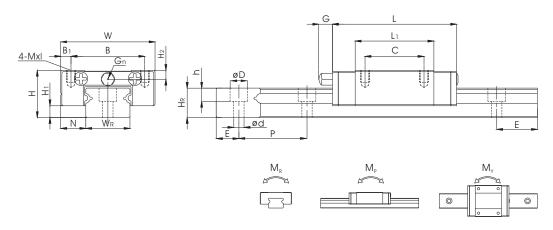
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.04	± 0.02	± 0.01
Dimensional tolerance of width N	± 0.04	± 0.025	±0.015
Variation of height H	0.03	0.015	0.007
Variation of height N	0.03	0.02	0.01
Pair Variation of width N(Master Rail)	0.07	0.04	0.02

Running Parallelism


Running paralleli	sm of block s	surface C to	surface A	Running paralle	lism of block	surface D to	surface B
Rail Length	A	ccuracy (µr	m)	Rail Length	Ad	ccuracy (µr	n)
(mm)	С	Н	Р	(mm)	С	Н	Р
50	12	6	2	1000-1200	25	18	11
50-80	13	7	3	1200-1300	25	18	11
80-125	14	8	3.5	1300-1400	26	19	12
125-200	15	9	4	1400-1500	27	19	12
200-250	16	10	5	1500-1600	28	20	13
250-315	17	11	5	1600-1700	29	20	14
315-400	18	11	6	1700-1800	30	21	14
400-500	19	12	6	1800-1900	30	21	15
500-630	20	13	7	1900-2000	31	22	15
630-800	22	14	8	2000—	31	22	16
800-1000	23	16	9				

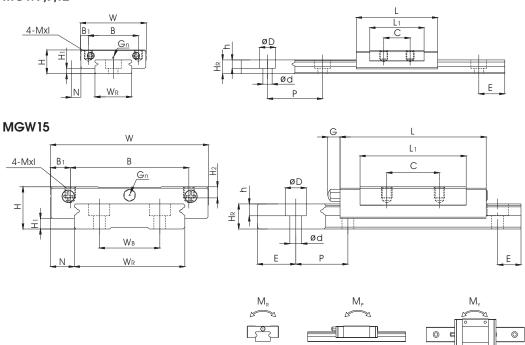


MG Linear Guide


MGN-C/MGN-H

MGN5,7,9,12

MGN15


Model	of /	nensio Assem (mm)						Dimer	nsions ((mm)	of Blo	ck				C	imen	sions (mm)		il		Mounting Bolt for	Basic Dynamic Load	Basic Static Load		atic Rate Moment		Wei	ight
No.	Н	H,	N	W	В	B ₁	С	Lı	L	G	G _n	Mxl	H ₂	W _R	H _R	D	h	d	Р	E	Rail (mm)	Rating C(kN)	Rating C _o (kN)	M _R kN-m	M _p kN-m	M _y kN-m	Block kg	Rail kg/m
MGN 5C	6	1.5	3.5	12	8	2	-	9.6	16	-	Ø0.8	M2x1.5	1	5	3.6	3.6	0.8	2.4	15	5	M2x6	0.54	0.84	2	1.3	1.3	0.008	0.15
MGN 7C	8	1.5	5	17	10	2.5	8	13.5	22.5		~1.0	M2x2.5	1.5	7	4.8	4.0	0.0	2.4	15	5	M2x6	0.98	1.24	4.70	2.84	2.84	0.010	0.22
MGN 7H	0	1.5	5	17	12	2.5	13	21.8	30.8	-	101.2	IVIZXZ.3	1.5	\	4.0	4.2	2.3	2.4	15	5	IVIZXO	1.37	1.96	7.64	4.80	4.80	0.015	0.22
MGN 9C	10	_	5.5	20	15	0.5	10	18.9	28.9		~1.4	M3x3	1.8	9	, -	,	3.5	2.5	20	7.5	140.0	1.86	2.55	11.76	7.35	7.35	0.016	0.00
MGN 9H	10	2	5.5	20	15	2.5	16	29.9	39.9	-	Ø1.4	IVI3X3	1.8	9	6.5	6	3.5	3.5	20	7.5	M3x8	2.55	4.02	19.60	18.62	18.62	0.026	0.38
MGN 12C	13	٠	7.5	07	00	2.5	15	21.7	34.7			M22 5	0.5	10		,	4.5	٠.	٥٢	10	140.0	2.84	3.92	25.48	13.72	13.72	0.034	
MGN 12H	113	3	7.5	27	20	3.5	20	32.4	45.4	-	Ø2	M3x3.5	2.5	12	8	6	4.5	3.5	25	10	M3x8	3.72	5.88	38.22	36.26	36.26	0.054	0.65
MGN 15C		,	0.5	20	٥٢	2.5	20	26.7	42.1			1404	_	15	10	,	4.5	2.5	40	15	14010	4.61	5.59	45.08	21.56	21.56	0.059	
MGN 15H	16	4	8.5	32	25	3.5	25	43.4	58.8	4.5	Ø3	M3x4	3	15	10	6	4.5	3.5	40	15	M3x10	6.37	9.11	73.50	57.82	57.82	0.092	1.06

MG Linear Guide

MGW-C/MGW-H

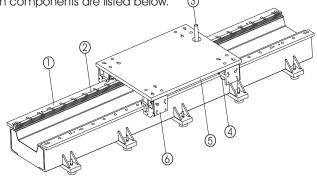
MGW7,9,12

Model		mensi Assen (mm	nbly				D		ions of	Bloc	k				[Dime	nsio (mi		Rail			Mounting Bolt for Rail	Basic Dynamic Load	Basic Static Load		atic Rate Moment		Weig	ght
No.	Н	H ₁	N	W	В	B ₁	С	L,	L	G	G _n	Mxl	H ₂	W _R	W _B	H _R	D	h	d	Р	Е	(mm)	Rating C(kN)	Rating C _o (kN)	M _R kN-m	M _p kN-m	M _v kN-m	Block kg	Rail kg/m
MGW 7C	9	1.0		٥٢	10	_	10	21	31.2		~1.0	1400	1.05	,,		- 0	,	2.0	2.5	20	10	140/	1.37	2.06	15.70	7.14	7.14	0.020	
MGW 7H	9	1.9	5.5	25	19	3	19	30.8	41	-	Ø1.2	M3x3	1.85	14	-	5.2	6	3.2	3.5	30	10	M3x6	1.77	3.14	23.45	15.53	15.53	0.029	0.51
MGW 9C	10	0.0	,	20	12	4.5	12	27.5	39.3		~1.0	1400	0.4	10		,	,	4.5	2.5	20	10	1400	2.75	4.12	40.12	18.96	18.96	0.040	
MGW 9H	12	2.9	6	30	24	3.5	24	38.5	50.7	-	Ø1.2	M3x3	2.4	18	-	7	0	4.5	3.5	30	10	M3x8	3.43	5.89	54.54	34.00	34.00	0.057	0.91
MGW 12C		2.4	•	40	00	,	15	31.3	46.1		α 1.0	140.0 (0.0			0.5	٥	4.5	4.5	40	15	144.0	3.92	5.59	70.34	27.80	27.80	0.070	
MGW 12H	14	3.4	8	40	28	6	28	45.6	60.4	-	Ø1.2	M3x3.6	2.8	24	-	8.5	ð	4.5	4.5	40	15	M4x8	5.10	8.24	102.70	57.37	57.37	0.103	1.49
MGW 15C		^ 4	_	/0	45	7.5	20	38	54.8		<i>α</i> ο			40		0.5	_	4.5		40	,,,	,,	6.77	9.22	199.34	56.66	56.66	0.143	
MGW 15H	16	3.4	9	60	45	7.5	35	57	73.8	5.2	Ø3	M4x4.2	3.2	42	23	9.5	8	4.5	4.5	40	15	M4x10	8.93	13.38	13.38	122.60	122.60	0.215	2.86

HV Heavy Load Linear Guide

Construction

HV linear guides are designed for heavy loads. It has the characteristics of high precision, stable performance and low friction. It is mainly used in mobile platform of joint robot, flexible production line, automobile production line and so on.



Feature

- 1. Heavy load capacity.
- 2. Modular designed components are easy to build different structure.
- 3. Connectable railway and rack can build to long-distance.
- 4. Lubrication tube integrated in roller housing.

Standard system

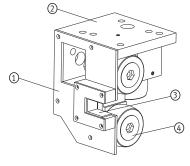
According to load capacity, SAIBO provide 3 sizes standard systems. With these 3 sizes systems' single components, customers are easy to adjust railways' span, carriage sizes and assembly directions. System's main components are listed below.

System's main components

- (1) Railway
- (3) Gear

⑤ Carriage plate

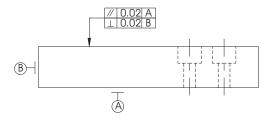
(2) Rack


(4) Roller

(6) Roller housing

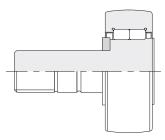
Roller housing

Roller housing is designed according to modular idea. It enables customers to adjust railways' span, carriage's sizes and assemble direction. Roller's inside and railway's wiper lubrication systems are integrated in this roller housing. After installation, customers only fix the automatic lubrication system's nozzle to the lubricate screw holes, the whole system's automatic lubrication will be working.


System's main components

① Wiper cover ③ Felt wiper

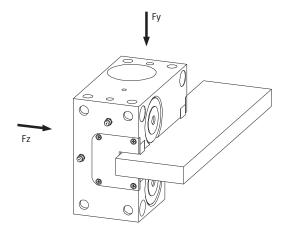
2) Roller housing4) Roller


Railway

The railway is made of high carbon bearing steel DIN 100Cr6. Working surface is hardened to over 50HRC. Accuracy is as below picture. Max length is 2000mm, but it can be connected easily to any length.

Roller

Roller is precision double rows roller bearing. It is heavy duty designed and treated. Heavy duty lithium soap grease is filled inside the bearing before delivery. Roller's outer diameter surface is spherical where radius is 500mm.

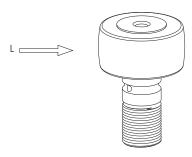


Load capacity

Roller inside is without cages and has the largest possible number of rolling elements. Therefore it has particularly high load capacity. According to designed basic life 1000km, rollers' load capacity is listed as below:

Roller size	Roller load	I capacity (N)
Roller Size	Dynamic	Static
62	41000	59300
72	58000	75300
90	75000	102300

Considering fixed to the roller housing, application's shock, safety factor, each roller housing's load capacity has to be reduced to below values.



Roller size	Roller housing lo	oad capacity (N)
Roller Size	Fy	Fz
62	13000	13000
72	17000	17000
90	33000	33000

Load/life calculation

After selected system size, verification calculation is necessary. Due to the hardness of the railway and fatigue analysis of railway and roller, the railway's life does not determine the system life. It is determined by biggest loaded roller's life. The system life will be equivalent to the shortest roller's life.

$$LF = \frac{L}{Lmax}$$
(LF should be less than 1.0)

L - Actual load (N)

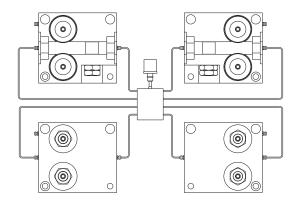
L max - Load capacity for basic life 1000km (N)

Roller size	L max -Load capacity for basic life 1000km (N)
62	41000
72	58000
90	75000

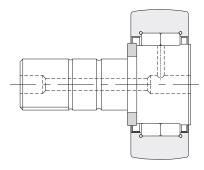
Then calculate roller's life by using below formula:

Life(km) =
$$\frac{1000}{(0.03 + 0.97 \text{LF*f})^3}$$

f - Reduction coefficient of the application and environment.


None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.2
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.2-5
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	1.5-2.5

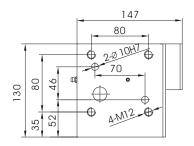
Lubrication

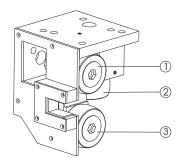

Railway

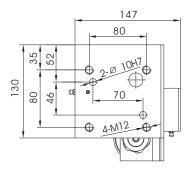
Lubrication will reduce the friction and increase system's life. Lubrication structure designed in the roller housing where oil soaked felt wipers running on the railways working surface. It should be relubricated each 100km running. It is easy to fill oil from the nozzle outside the roller housing. Lubricate should be mineral oil. When the felt wiper wear to a certain extent, it must be replaced. If necessory, nozzle could be connected to the automatic oiling system as below picture.

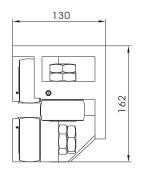
Roller

Heavy duty lithium soap grease is filled inside the bearing before delivery. We recommend relubricate roller after each 1000Km working. In every roller housing, all of three rollers' lubricate holes are connected to roller housing's lubricate tube. So fill grease into the nozzle outside of the roller housing, each bearing will be re-lubricated. According to grease's properties, roller can be used between -30°C and 120°C working conditions.

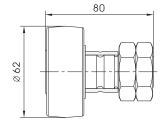

Gear and rack

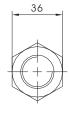

Gear and rack must be lubricated each 100km running. We recommend high viscosity and heavy load mineral oil.

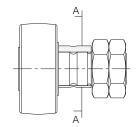


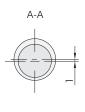

Size 62

Roller housing

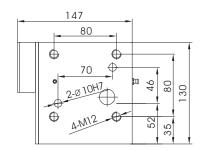


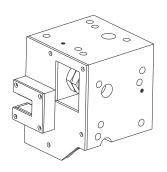


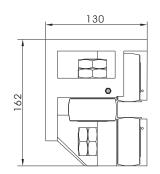


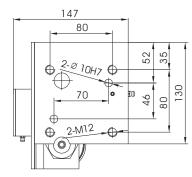

Dellerheusing	Concentri	Concentric/Eccentric roller position			pacity (N)
Roller housing type	Position ①	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV62-RH62.1R	concentric	eccentric	eccentric	13000	4000
SB-HV62-RH62.2R	eccentric	concentric	eccentric	13000	4000
SB-HV62-RH62.3R	eccentric	eccentric	concentric	13000	4000

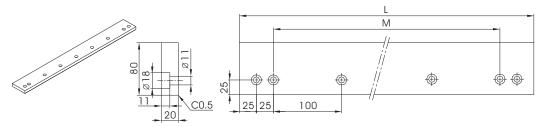
Roller





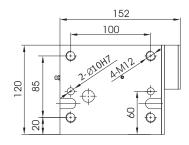


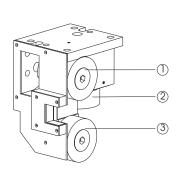

Turo	Roller load capacity (N)		
Туре	Dynamic	Static	
SB-HV62-RC62	41000	59300	
SB-HV62-RE62	41000	59300	

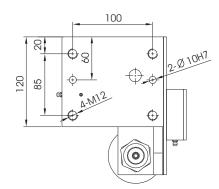


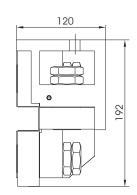
Dellerheusing	Concentri	c/Eccentric roll	ller position Load capacity (N)		pacity (N)
Roller housing type	Position ①	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV62-RH62.1L	concentric	eccentric	eccentric	13000	4000
SB-HV62-RH62.2L	eccentric	concentric	eccentric	13000	4000
SB-HV62-RH62.3L	eccentric	eccentric	concentric	13000	4000

Railway

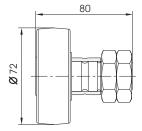

Туре	L*	М
SB-HV62-004	2000	1900

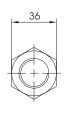

^{*} Railways can be connected.

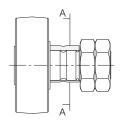


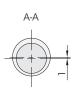

Size 72

Roller housing

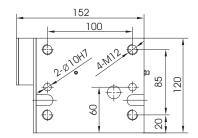




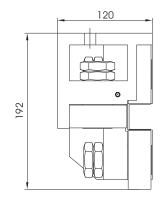



Dallanhamina	Concentric/Eccentric roller position			Load capacity (N)	
Roller housing type	Position(1)	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV72-RH72.1R	concentric	eccentric	eccentric	17000	5000
SB-HV72-RH72.2R	eccentric	concentric	eccentric	17000	5000
SB-HV72-RH72.3R	eccentric	eccentric	concentric	17000	5000

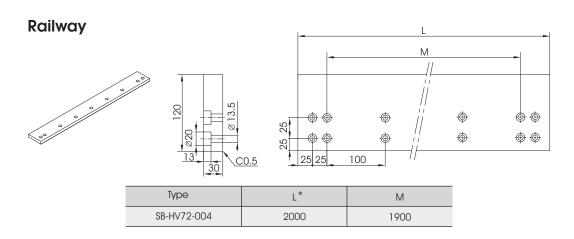
Roller



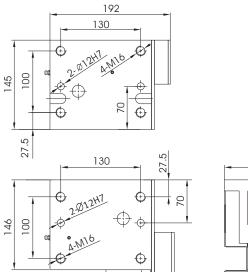


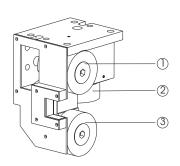


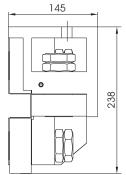
Typo	Roller load capacity (N)		
Туре	Dynamic	Static	
SB-HV72-RC72	58000	75300	
SB-HV72-RE72	58000	75300	



Dollar bausing	Concentri	Concentric/Eccentric roller position Load capacity (ler position Load capacity (N)	
Roller housing type	Position ①	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV72-RH72.1L	concentric	eccentric	eccentric	17000	5000
SB-HV72-RH72.2L	eccentric	concentric	eccentric	17000	5000
SB-HV72-RH72.3L	eccentric	eccentric	concentric	17000	5000

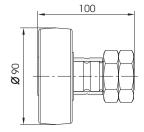


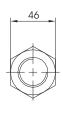

^{*} Railways can be connected.

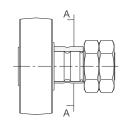


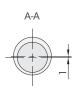
Size 90

Roller housing

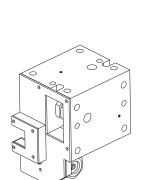


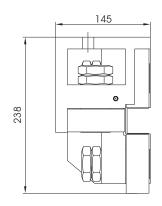


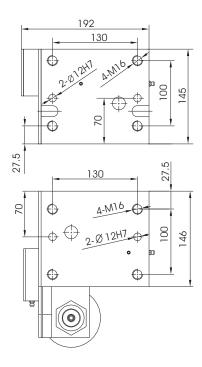



D. II	Concentri	Concentric/Eccentric roller position			pacity (N)
Roller housing type	Position(1)	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV90-RH90.1R	concentric	eccentric	eccentric	33000	8000
SB-HV90-RH90.2R	eccentric	concentric	eccentric	33000	8000
SB-HV90-RH90.3R	eccentric	eccentric	concentric	33000	8000

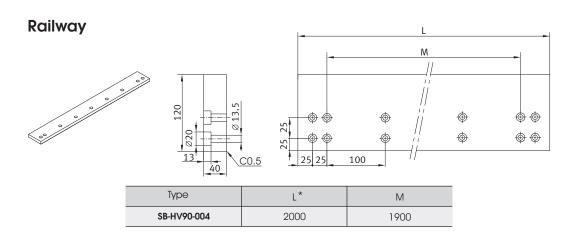
Roller







Turo	Roller load capacity (N)			
Туре	Dynamic	Static		
SB-HV90-RC90	75000	102300		
SB-HV90-RE90	75000	102300		



D. II	Concentri	c/Eccentric roll	eller position Load capacity (N)		pacity (N)
Roller housing type	Position(1)	Position(2)	Position(3)	Dynamic for concentric roller	Dynamic for eccentric roller
SB-HV90-RH90.1L	concentric	eccentric	eccentric	33000	8000
SB-HV90-RH90.2L	eccentric	concentric	eccentric	33000	8000
SB-HV90-RH90.3L	eccentric	eccentric	concentric	33000	8000

^{*} Railways can be connected.

WUXI SAIBO INDUSTRY CO LTD

6-701 XIHU EAST ROAD, WUXI 214011, CHINA Tel: +86-510-8203 9930

www. saibo-motion.com info@saibo-motion.com

S01E-2024